A self-organizing HCMAC neural-network classifier
نویسندگان
چکیده
This paper presents a self-organizing hierarchical cerebellar model arithmetic computer (HCMAC) neural-network classifier, which contains a self-organizing input space module and an HCMAC neural network. The conventional CMAC can be viewed as a basis function network (BFN) with supervised learning, and performs well in terms of its fast learning speed and local generalization capability for approximating nonlinear functions. However, the conventional CMAC has an enormous memory requirement for resolving high-dimensional classification problems, and its performance heavily depends on the approach of input space quantization. To solve these problems, this paper presents a novel supervised HCMAC neural network capable of resolving high-dimensional classification problems well. Also, in order to reduce what is often trial-and-error parameter searching for constructing memory allocation automatically, proposed herein is a self-organizing input space module that uses Shannon's entropy measure and the golden-section search method to appropriately determine the input space quantization according to the various distributions of training data sets. Experimental results indicate that the self-organizing HCMAC indeed has a fast learning ability and low memory requirement. It is a better performing network than the conventional CMAC for resolving high-dimensional classification problems. Furthermore, the self-organizing HCMAC classifier has a better classification ability than other compared classifiers.
منابع مشابه
A Modfied Self-organizing Map Neural Network to Recognize Multi-font Printed Persian Numerals (RESEARCH NOTE)
This paper proposes a new method to distinguish the printed digits, regardless of font and size, using neural networks.Unlike our proposed method, existing neural network based techniques are only able to recognize the trained fonts. These methods need a large database containing digits in various fonts. New fonts are often introduced to the public, which may not be truly recognized by the Opti...
متن کاملLandforms identification using neural network-self organizing map and SRTM data
During an 11 days mission in February 2000 the Shuttle Radar Topography Mission (SRTM) collected data over 80% of the Earth's land surface, for all areas between 60 degrees N and 56 degrees S latitude. Since SRTM data became available, many studies utilized them for application in topography and morphometric landscape analysis. Exploiting SRTM data for recognition and extraction of topographic ...
متن کاملA Method for Body Fat Composition Analysis in Abdominal Magnetic Resonance Images Via Self-Organizing Map Neural Network
Introduction: The present study aimed to suggest an unsupervised method for the segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in axial magnetic resonance (MR) images of the abdomen. Materials and Methods: A self-organizing map (SOM) neural network was designed to segment the adipose tissue from other tissues in the MR images. The segmentation of SAT and VA...
متن کاملA Neural Network Approach to Pedestrian Detection
The paper presents an original approach for pedestrian detection using the neural network classifier called Concurrent Self-Organizing Maps (CSOM), previously introduced by first author; it represents a winner-takes-all collection of neural modules. The algorithm has the following stages: (a) feature selection using one of the three candidate techniques Histogram of Oriented Gradients (HOG)/1D ...
متن کاملDeveloping A Fault Diagnosis Approach Based On Artificial Neural Network And Self Organization Map For Occurred ADSL Faults
Telecommunication companies have received a great deal of research attention, which have many advantages such as low cost, higher qualification, simple installation and maintenance, and high reliability. However, the using of technical maintenance approaches in Telecommunication companies could improve system reliability and users' satisfaction from Asymmetric digital subscriber line (ADSL) ser...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on neural networks
دوره 14 1 شماره
صفحات -
تاریخ انتشار 2003